(B)OTOMLTION:

THE SHAFT MOTIONS COMPANY

FLUID POWER FOR AUTOMATION
Back and Forth Windshield
Wiper Motion
Optional Stops at Multiple
Positions in any Sequence

Don’t live with "one size fits all"

Select a shaft motion
Pick a basic unit
Specify options that serve you best
Get delivery in five days
Pay an off the shelf price
Run reliable production

Optimize your application with
multiple choices for most parameters;
150 billion standard combinations!
Specials? Send us your sketch and we will quote you one or one thousand.

On time delivery

(B)OTOMATION builds actuators, stepping actuators and indexing actuators of proven materials, components and design

UNITS CONSTRUCTED FOR HEAVY DUTY AND
LUBRICATION: LITHIUM BASED GREASE WITH PTFE. SEE DUST RESISTANCE OR WASHDOWN APPLICATIONS INSTALLATION AND MAINTENANCE INSTRUCTIONS.

Performance you can count on

All Rotomation devices except AL75 are of rack and pinion construction to provide a constant torque over entire rotation of their shafts. Their similarities and differences are outlined in the following table.

\curvearrowleft DESIGN YOUR A032 THREE POSITION ROTARY ACTUATOR

A032 SUBMINIATURE DUAL RACK ACTUATOR THE MIGHTIEST MINI -- THE MOST TORQUE FOR ITS SIZE

PICTURED ACTUAL SIZE

DOUBLE ENDED SHAFT OPTION
OR REAR SHAFT PROJECTION

TOP VIEW

ROTATION ADJUSTERS OPTION, 30 DEG. RANGE

DETAIL 'Z'

RATINGS	
Torque Factor: in. Ib./p.s.i. .115 Max. Working Pressure, p.s.i.: 130 Max. Torque: Non-shock, in. Ib. 15 Max. Thrust: Non-shock, Ib. 30 Max. Radial Load: Non-shock, lb. 40 Displacement: in ${ }^{3}$ /deg. .002 Weight std. unit 90 deg: Ib. 0.5 Backlash at ends of rotation 0	

NOTE:

1. The position of the ports and adjusters relative to the shaft can be changed by specifying rear projecting shaft.
2. 10-32 ports will accept M5X. 8 fittings.
3. For plumbing and magnetic switch system setup, request guide.

A032 SUBMINIATURE THREE POSITION ACTUATOR

(. 250 DIA. OPT. DET. 'Z')
(2) $10-32 \times 3 / 8 \mathrm{DP}$.

10-32 PORTS POS. 5
(SPECIFY VENT POS.)

DETAIL ' Z '
TOP VIEW

10-32 PORT POS. 5

RATINGS

Torque Factor to end position: in. lb./p.s.i.	.115
Torque Factor to center: in. lb./p.s.i.	.057
Max. Working Pressure, p.s.i.:	130
Max. Torque: Non-shock, in. lb.	15
Max. Thrust: Non-shock, lb.	30
Max. Radial Load: Non-shock, Ib.	40
Displacement: in ${ }^{3}$ deg.	.002
Weight std. 90 deg. unit: lb., "A" above	0.8
Backlash at ends of rotation	0

NOTES:

1. The position of the ports and adjusters relative to the shaft can be changed by specifying rear projecting shaft as shown in photo.
2. 10-32 ports will accept M5X. 8 threads.
3. For plumbing and magnetic switch system setup, request guide. Note that (4) magnetic switches are required to sense all (3) positions.

\curvearrowleft DESIGN YOUR AL75 ROTARY ACTUATOR \curvearrowleft

Piston is of internally lubricated PBT plastic, a stable, low friction, non-absorbent, high impact strength material. Body, including cylinder bore, is aluminum (6061) hardcoat anodized. Shaft is electroless nickel plated steel.

Ideal for food processing or clean room applications. Stainless steel or PET construction available on special order.

Washdown J option has plain bearing of PET instead of standard ball bearing.

AL75 CONSTRUCTION

One-piece, double ended piston drives shaft lug.
Shaft torque and angular velocity vary over rotation angle. Torque and velocity both low at ends of stroke to provide gentle start and stop.

Shaft lug shape and piston groove contour held to close tolerance for low friction and long life. Units tested under load beyond 20 million cycles without lubrication and without appreciable wear. Piston configuration is stable in cylinder bore, preventing localized wear.

Maximum rotation is about 95 deg., limited by geometry of drive system.

AL75 ROTARY ACTUATOR

ค DESIGN YOUR A752 ROTARY ACTUATOR

SEAL REPAIR KITS

PART NUMBERS FOR SEAL REPAIR KITS

FEATURES

High torque: . 44 P in. lb
Ball bearings
Compact size
Roller burnished long life cylinder bores
Mounts on base, front or rear face
No backlash at ends of rotation

A752 COMPACT, HIGH TORQUE DUAL RACK ACTUATOR

NOTE:
Unit should not be subjected to torque impacts, as those from a high momentum load, without external stops.

\curvearrowleft DESIGN YOUR 5/8 BORE TIE ROD ROTARY \curvearrowleft ACTUATOR

 sketch. Rotomation can provide units to almost any configuration.
To expedite the order of a duplicate of a prior unit, refer to prior invoice/serial number stamped on the unit body.

Flow control and cushion cannot be installed in same end cap. Flow control in A01, A1, A12 10.32 port only.

Needle valve cannot be on same side as port.
CALCULATED TORQUE IN INCH-POUNDS

Deduct 10\% for friction						
	OPERATING PRESSURE IN PSI					
UNIT	25	50	60	80	100	200
A01	1.9	3.8	4.6	6.2	7.7	-
A1	3.8	7.6	9.2	12.3	15.3	30.7
A12	7.6	15.2	18.4	24.6	30.6	-

SEAL REPAIR KITS
PART NUMBERS FOR SEAL REPAIR KITS
FILL IN UNIT SERIES AND ALL RELATED OPTIONS:

EXAMPLES:
SEAL KIT FOR A12-90-0-90-S37-3F1-1/8-2 = SRK-A12-90-0-90-F
NOTE: IF NO OPTIONS, SPECIFY SRK-A12-STD.

A01 ROTARY ACTUATOR

A1 \& A12 ROTARY ACTUATORS

	'C' DIMENSION				ADD TO 'C' DIM. PER SIDE	
		A1		A12		
ROTATION	STD.	'R' OR 'S' OPT.	STD.	'R' OR 'S' OPT.	'Q' OPTION	'Q' \& 'A' OPT.
30 DEG.	2.06	4.95	2.65	5.02	. 06	. 13
45	2.06	5.08	2.91	5.15		
60	2.28	5.21	3.18	5.28		
90	2.81	5.21	3.70	5.28		
100	2.98	5.21	3.87	5.28		
120	3.33	5.21	4.22	5.28		
180	4.38	5.21	5.27	5.77		
190	4.55	5.21	5.45	5.95		
270	5.95	6.45	6.84	7.34		
360	7.52	8.02	8.41	8.91		
370	7.69	8.19	8.59	9.09		
540	10.66	11.16	11.55	12.05		
550	10.83	11.33	11.73	12.23		
720	13.80	14.30	14.70	15.20	1	1
730	13.98	14.48	14.87	15.37	. 06	. 13

RATINGS	A1	A12
Torque Factor: in. lb./p.s.i.	.153	.306
Max. Working Pressure, p.s.i.:	Air	150
	Oil	300
	300	
Max. Thrust: Non-shock, lb.	40	40
Max. Radial Load: Non-shock, lb.	40	40
Displacement: in ${ }^{3}$ /deg.	.0026	.0052
Weight 180 std. unit: lb.	1.0	1.6

NOTES

1. Switch mounts by strap to cylinder; place as required for access and signal phasing; R (Sink) or S (Source) switches only.

DETAIL 'Z'
'C \& 'F NEEDLE VALVE
SPECIFY POS. 1, 2, 3 OR 4
'A' OR 'F' \& 'A' OPT (10-32 PORT ONLY)

BUILT FOR OEM - RIGHT MOTION - RIGHT SIZE

The "LOCK STEP ACTUATOR" drives three shafts in spooky synchronism. A42-360 triple shown.

Cramped for space (note necked down tie rods) but need lots of torque In washdown package. S3 drive cylinder, S2 reset cylinder.
Symbol: written description

High torque in small package.
Symbol: 44
S44-360-CW-S10-3C2-1/4-1,3 shown
A special that has become popular.

OEM SPECIALS

With just a few custom parts, units uniquely suited to process functions provide low cost means to efficient, reliable productions systems.

DOUBLE TORQUE - FIVE POSITIONS

A44-90/45-0-90/45-HS75-1/4-1,3 SHOWN

Three position A12: exposed parts electroless nickel plated or solid stainless steel.

CONCENTRIC SHAFT ACTUATORS

Two actuators on same centerline. Concentric shafts independently driven.
A2 and A4 shown.

THREE POSITIONS-GENTLY

Moves fragile product to any of three positions. Smooth motion, progressive cushions with fine adjustment, shaft to fit load. A22 shown.

』 DESIGN YOUR 1" TO 2" BORE TIE ROD ROTARY ACTUATOR \curvearrowleft

Wre or provide a dimensioned sketch. Rotomation can provide units to almost any configuration.
To expedite the order of a duplicate of a prior unit, refer to prior invoice/serial number stamped on the unit body.
Needle valve cannot be on same side as port.

	OPERATING PRESSURE IN PSI						
UNIT	25	50	60	80	100	200	$300(\mathrm{HP})$
A2	12.2	24.5	29.4	39.2	49	98	147
A22	24.5	49	58.8	78.4	98	196	294
A3	37.2	74.5	89.4	119	149	298	447
A32	74.5	149	179	238	298	596	894
A4	86.5	173	208	277	346	692	1038
A42	173	346	415	554	692	1384	2076

High pressure option (HP) should be used for pressures exceeding 250 psi.

LOCATING DOWEL PIN SOCKETS-TIE ROD UNITS

UNIT	A	B	C	D	E	F	G	H	J	K	L	M	N
A 01	-	-	-	.750	.375	.50	-	-	-	1.50	-	.125	.090
$\mathrm{~A} 1, \mathrm{~S} 1$.750	.375	.708	.750	.375	.708	-	-	-	1.50	-	.188	.150
X 1	1.000	.500	1.311	1.000	.500	1.311	-	-	-	2.00	-	.188	.150
$\mathrm{~A} 12, \mathrm{~S} 12$.750	.375	.708	.750	.375	.708	-	-	-	2.50	-	.188	.150
X 12	1.000	.500	1.311	1.000	.500	1.311	-	-	-	2.50	-	.188	.150
A2,S2	1.500	.750	.991	-	-	-	.750	1.500	.750	2.69	.030	.250	.200
X2	1.500	.750	1.500	1.500	.750	1.500	.750	-	-	2.69	.030	.250	.200
A22,S22	1.500	.750	.991	-	-	-	.750	1.500	.750	3.38	.030	.250	.200
X22	1.500	.750	1.500	1.500	.750	1.500	.750	-	-	3.38	.030	.250	.200
A3,S3,X3	1.375	.6875	1.490	1.563	.781	1.490	.750	-	-	3.81	.030	.375	.250
A32,S32,X32	1.375	.6875	1.490	1.563	.781	1.490	.750	-	-	4.63	.030	.375	.250
A4,S4,X4	1.375	.6875	1.490	2.000	1.000	1.490	.750	-	-	4.31	.030	.375	.250
A42,S42,X42	1.375	.6875	1.490	2.000	1.000	1.490	.750	-	-	5.50	.030	.375	.250

A2 \& A22 ROTARY ACTUATORS

A3 \& A32 ROTARY ACTUATORS

'C OR ' F NEEDLE VALVE SPECIFY POS. 1, 2, 3 OR 4
'Q' \& 'A' OPTION

Q' ${ }^{\prime}$

RATINGS	A3	A32
Torque Factor: in. lb./p.s.i.	1.49	2.98
Max. Working Pressure, p.s.i.:	Air	250
	Oil	750
	750	
Max. Thrust: Non-shock, lb.	300	300
Max. Radial Load: Non-shock, Ib.	300	300
Displacement: in ${ }^{\text {3/ }}$ deg.	.026	.052
Weight 180 std. unit: lb.	6.1	8.8

NOTES:

1. For oil pressures exceeding approximately 250 psi recommend option HP which adds 1 " to ' C ' dimension.
2. Switch mounts by strap to cylinder; place as required for access and signal phasing.

A4 \& A42 ROTARY ACTUATORS

2. Switch bracket mounts to tie rod; place as required for access and signal phasing

ONE STEP AT A TIME: THE INDEXING ACTUATOR

3

CONSTRUCTION AND OPERATION

Construction and external size similar to rack and pinion actuator, but pinion drives shaft one way through overrunning clutch.

Four way valve controls full cycle
Drive: Rack drives pinion, pinion drives shaft through overrunning clutch until pawl stops and locks ratchet.
Lock: Pawl prevents forward motion, rack force and non-return clutch prevent reverse motion.
Reset: Rack reverses, drives pinion backward to start point, cam lifts pawl; shaft remains stationary held by non-return clutch.
Each shaft step controlled by accurately cut ratchet.
Sensors and system signals
Extended pawl shaft moves 7 deg. at index and reset; use proximity detector, low force sensitive switch or pilot valve
Magnetic pistons and switches

INTERNAL CLUTCH BEARING

APPLICATIONS-POSSIBLE ONLY WITH ROTOMATION INDEXING ACTUATORS

DESIGN YOUR INDEXING ACTUATOR

When an option is not required, leave blank.
Write out any special requirements in English or provide
a dimensioned sketch. Rotomation can provide units to
almost any configuration.
To expedite the order of a duplicate of a prior unit, refer
to prior invoice/serial number stamped on the unit body.

SERIES	STANDARD	OPTION SYMBOL
X1,X12	S37	D37
X2,X22	S5	D5
X3,X32	S75	D75
X4,X42	S10	D10

DIMENSIONS: SEE PAGE 43
S=SINGLE END S=SINGLE END
$\mathrm{D}=\mathrm{DOUBLE}$ END
$37=.375$ DIA. $5=.500$ DIA.
$75=.750$ DIA.
$10=1.000$ DIA.
$10=1.000$ DIA.

CALCULATED TORQUE IN INCH-POUNDS
Deduct 10\% for friction

OPERATING PRESSURE IN PSI						
UNIT	25	50	60	80	100	200
X1	3.8	7.6	9.2	12.3	15.3	30.7
X12	7.6	15.2	18.4	24.6	30.6	-
X2	12.2	24.5	29.4	39.2	49	-
X22	24.5	49	58.8	-	-	-
X3	37.2	74.5	89.4	119	149	-
X32	74.5	149	-	-	-	-
X4	86.5	173	208	277	346	-
X42	173	346	415	-	-	-

NOTE: REED SWITCH 'G NOT AVAILABLE ON X1, X12 SEE PAGE 40, 41

EXTENSION CABLES FOR SWITCHES
WITH PIGTAIL AND CONNECTOR

ORDER SEPARATELY	
CABLE	PART NUMBER
2 METER LENGTH	CC2
5 METER LENGTH	CC5

SEAL REPAIR KITS
PART NUMBERS FOR SEAL REPAIR KITS FILL IN UNIT SERIES AND ALL RELATED OPTIONS: SRK - $\underset{\text { SERIES }}{\substack{\text { FLOW } \\ \text { CONTROL }}} \begin{gathered}\mathrm{F} \\ \\ \text { CUSHIONS }\end{gathered}$ EXAMPLES:
SEAL KIT FOR X3-90-CCW-S75-3F2-1/4-1 = SRK-X3-F
NOTE: IF NO OPTIONS, SPECIFY SRK-X3-STD.

X1 \& X12 INDEXING ACTUATORS

(usable on reset cylinder only) or more by a correctly adjusted cushion
2. Switch mounts by strap to cylinder; place as required for access and signal phasing; R (Sink) or S (Source) switches only.

X2 \& X22 INDEXING ACTUATORS

X3 \& X32 INDEXING ACTUATORS

X4 \& X42 INDEXING ACTUATORS

a bumper (usable on the reset cylinder only) or more by a correctly adjusted cushion
2. Switch bracket mounts to tie rod; place as required for access and signal phasing
3. For rear mount, order rear mount construction to reverse body and provide rear mount holes. Note reduced impact energy capacity, page 29.

INDEXING SIMPLIFIED: CALCULATE IMPACT EASILY

Impact can displace work pieces, damage fixtures or the indexing actuator itself by breaking its shaft or ratchet key.

Avoid these effects by limiting rotational speed with a flow control; use the maximum available time consistent with cycle requirements.

CALCULATE MOMENT OF INERTIA

CALCULATE IMPACT IN ROTARY MOTION

$\theta=$ angle of motion in radians, 1 radian $=57.3$ degrees
$\mathrm{w}=$ angular velocity in radians/second
$t=$ time duration of motion in seconds
For many pneumatic systems
$\mathrm{w}=2.3 \times \theta / \mathrm{t}$ gives a reasonable estimate of maximum angular velocity

Impact energy:

$$
\begin{aligned}
\mathrm{W} & =\text { impact energy in in lb } \\
J & =\text { total moment of inertia of entire shaft load in in } \mathrm{lb} \mathrm{sec}^{2} \\
& =\mathrm{J} \text { of workpiece }+\mathrm{J} \text { of fixtures }+\mathrm{J} \text { of supports member(s) } \\
\mathrm{W} & =1 / 2 \mathrm{Jw}{ }^{2}
\end{aligned}
$$

UNIT SELECTION

The following are maximum practical values of W for production use. They are based upon shaft tests to failure and provide a factor of safety of about 4 for shaft fracture. Though safe for the shaft, this impact may dislodge product or have other inertia effects.

UNIT

X1 \& X12
X2 \& X22
X3 \& X32
X4 \& X42

FRONT SHAFT
2.1 in lb

4
8.9
17.4

REAR SHAFT
.4 in lb
1.2

4
6.4

STEPPING ACTUATORS MOUNTING DIMENSIONS

STEPPING ACTUATOR RATINGS

	S1	S2	S22	S3	S32	S4	S42
Torque Factor: in. lb./p.s.i.	. 153	. 49	. 98	1.49	2.98	3.46	6.92
Max. Working Pressure, p.s.i.: Air	150	150	75	130	65	120	60
Oil	300	150	75	130	65	120	60
Max. Torque: Non-shock, in. lb.	45	73	73	196	196	412	412
Max. Reverse Torque: Non-shock, in. Ib.	23	37	37	98	98	206	206
Max. Thrust: Non-shock, lb.	40	75	75	150	150	200	200
Max. Radial Load: Non-shock, lb.	40	75	75	150	150	200	200
Displacement: in ${ }^{3} / \mathrm{deg}$.	. 0026	. 0086	. 0172	. 026	. 052	. 060	. 121
Weight 180 deg. std. unit: lb.-oz.	1-2	2-7	3-12	6-2	8-12	8-14	13-14

HINTS ON USING A STEPPING ACTUATOR

The stepping actuator provides torque while rotating through its specified angle, always in one direction. It has no ability to slow or stop its load, so it will stop at a point determined by load inertia, friction, or external stops. The shaft can freewheel in the forward direction without restriction, so it has no fixed reference position. A one way clutch in the body prevents rotation in the reverse direction. Optional rotation adjusters can be used to set the stroke, and multiple stroke lengths can be obtained from a multi-angle actuator. The actuator can be stalled continuously by an external stop without problems.

Natural applications for the stepping actuator include:
indexing applications where there is a high drag/inertia ratio and where error does not accumulate, such as driving a pinch roller to pull stock from a spool incrementally to be cut into lengths
driving detented items such as rotary switches, cam sequences, etc
those needing one-direction rotary motion with no position accuracy requirement, such as waste conveyors

Torque Ratings

The maximum torque is limited by the roller clutches used to drive the shaft and to prevent reverse rotation. Exceeding the maximum working pressure specified may overload the clutch, reducing life and/or causing immediate failure. Dual rack actuators are intended for use in applications where the maximum torque rating of the clutch cannot be utilized on normal shop air. Please note that normal shop air may overload the clutch on a dual rack actuator.

Reverse torque from an external source can also damage the actuator if it exceeds the maximum torque rating.

PRECISE POSITIONING/INDEXING

The stepping actuator can index even a high inertia load very precisely with a shot pin or other detent mechanism. The precision of the angle and load position is that of the detent system. This offers a number of advantages:

The stop positions can be adjusted by adjustment of the detent position.
Irregular, custom angle sequences are possible.
The detent can be placed at a large radius to handle high inertia loads.

LOAD POSITION STABILITY

The shaft and load are prevented from rearward motion by the drive clutch and by a similar non-return clutch installed between the shaft and body. However, the clutches offer no resistance to forward motion, so torques in that direction will displace the shaft and load. Unwanted forward motion can be prevented by a controlled clutch/brake. Such a device can be installed on the rear projection of a double ended shaft.

$\therefore \begin{gathered}\text { DESIGN YOUR PBL3 PICK } \& \text { PLACE ACTUATOR } \\ \text { MINIATURE-VACUUM THRU ROD-BULT IN VACUUM PORT }\end{gathered}$

\curvearrowright DESIGN YOUR PBM3 PICK \& PLACE ACTUATOR \curvearrowleft
 miniature-vacuum thru rod-built in vacuum port-magnetic switches

© DESIGN YOUR PICK \& PLACE ACTUATOR

When an option is not required, leave blank
Write out any special requirements in English or provide a dimensioned sketch. Rotomation can provide units to almost any configuration.

To expedite the order of a duplicate of a prior unit, refer to prior invoice/serial number stamped on the unit body.
NEEDLE VALVE CANNOT BE ON SAME SIDE AS PORT.

TORQUE AT 100 PSI	ROT. BORE	RACKS	LINEAR BORE	SERIES SYMBOL
7	5/8	1	5/8	PA01
49	1	1	$13 / 8$	PA2
98	1	2	$13 / 8$	PA22
149	$13 / 8$	1	$13 / 8$	PA3
238 AT 80	$13 / 8$	2	$13 / 8$	PA32

EXTENSION CABLES FOR SWITCHES WITH PIGTAIL AND CONNECTOR

ORDER SEPARATELY	
CABLE	PART NUMBER
2 METER LENGTH	CC2
5 METER LENGTH	CC5

POSITION	INDICATES	OUTPUT CIRCUIT			LEAD
$\begin{aligned} & 7 \\ & 8 \end{aligned}$	LINEAR, 1 SW LINEAR, 2 SW	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~S} \\ & \mathrm{G} \\ & \mathrm{~N} \end{aligned}$	NPN Sink PNP Source Reed No Switch Mag Only	$\begin{aligned} & \mathrm{L} \\ & \mathrm{C} \end{aligned}$	9' Lead Connector
SEE CATALOG PAGES 40, 41					

SEAL REPAIR KITS
PART NUMBERS FOR SEAL REPAIR KITS
FILL IN UNIT SERIES AND ALL RELATED OPTIONS:

EXAMPLES:
SEAL KIT FOR PA2-90-A4-3C1-1A-3RL-WA4 = SRK-PA2-CA
NOTE: IF NO OPTIONS, SPECIFY SRK-PA2-STD.

TO PROVIDE AN INDEXING ROTARY MOTION COMBINED WITH A LINEAR MOTION, CONSIDER THE NITPICKER, WHICH COMBINES THE X2 OR X22 ROTARY DRIVE WITH THE LINEAR MOTION FACILITY OF THE PA2 OR PA22.

CONFIGURATION IS SIMILAR TO THE PA2 OR PA22. FOR SPECIFICATION AND ORDERING DETAILS, CONSULT FACTORY; ASK FOR THE NITPICKER DESIGN CHART. FUNCTIONS AND OPTIONS ARE SIMILAR TO THOSE OUTLINED ABOVE BUT HAVE ROTARY CHARACTERISTICS OF THE X2 AND X22.

PA01 MINIATURE PICK \& PLACE ACTUATOR

LOTS OF ACTION, TINY SPACE, TINY COST

LIMIT BOTH ROTATIONAL \& LINEAR SPEEDS BY USE OF FLOW CONTROL IN EXHAUSTING CYLINDER.

MAGNETIC SWITCH OPTIONS
Solid state switches (R or S) are available on rotary and linear sections of unit. Switches mount to cylinders; place as required for access and phasing. Add $1 / 2$ " to cylinder length and unit height for linear switches.

NOTES:

1. Rotary options available are the same as A01.
2. Stop tubes are available to stabilize the extended shaft. Standard lengths are 1 " and 2 "; add to unit height. Sleeves for switch magnets serve the same function
3. Needle valve: see page 15

MAXIMUM RATINGS

ROTARY	PRESSURE, AIR	100
SECTION	PRESSURE, OIL	100
LINEAR	PRESSURE, AIR	100
SECTION	PRESSURE, OIL	100
TORQUE,	NON-SHOCK, IN.-LB.	8
Rot. Act. D	p: in ${ }^{3} / \mathrm{deg}$.	. 0013
Weight 18	deg., 2" std. unit: lb.	0.9
Rotation Tolerance:$-0+10 \mathrm{deg} .$		Backlash: 6 deg.

PA2 \& PA22 PICK \& PLACE ACTUATORS

PRESSURE PSI	TORQUE-IN. LB.		PUSH LB.	PULL LB.
	PA2 (.49 X PSI)	PA22 (.98 X PSI)	$(1.48 \times$ PSI)	$(.70 \times$ PSI)
60	29	58	89	42
80	39	78	118	56
100	49	98	148	70
150	73	147	222	105
200	98	196	296	140
300	NA	NA	444	210
500	NA	NA	740	350

Above figures are computed; output torques and forces are reduced by internal friction.

UNCONTROLLED IMPACT CAN CAUSE DAMAGE. LIMIT BOTH ROTATIONAL \& LINEAR SPEEDS BY USE OF FLOW CONTROL IN EXHAUSTING CYLINDER.

MAGNETIC SWITCH OPTIONS

Reed (G) and solid state switches (R or S) are available on rotary and linear sections of unit. Switches mount to cylinders; place as required for access and phasing.

ROTARY INSTALLATIONS:

Find C dimension in tables on A2 \& A22 page.
LINEAR INSTALLATIONS:
Add $11 / 2^{\prime \prime}$ to cylinder length and unit height

OPTIONAL ROD END (WORKS WITH SMA-10) SHOWN AT MIDPOINT OF ROTATION

MAXIMUM RATINGS			
		PA2	PA22
ROTARY	PRESSURE, AIR	250	250
SECTION	PRESSURE, OIL	250	250
LINEAR	PRESSURE, AIR	250	250
SECTION	PRESSURE, OIL	500	500
TORQUE, NON-SHOCK, IN.-LB.		200	250
Rot. Act. Disp: in ${ }^{3} / \mathrm{deg}$.		. 0086	. 0172
Weight 180 deg., 2" std. unit: lb.		5.4	6.7
Rotation Tolerance:		Backlash:	
PA2 \& PA22 $-0+3$ deg.		PA2	2 deg. 1 deg

NOTES:

1. Stop tubes are available to stabilize the extended shaft. Standard
lengths are 1 " and 2 "; add to unit height. Sleeves for switch magnets
serve the same function
2. Needle valve: see page 19

PA3 \& PA32 PICK \& PLACE ACTUATORS

OPERATION

PRESSURE PSI	TORQUE-IN. LB.		PUSH LB.	PULL LB.
	PA3 (1.49 X PSI)	PA32 (2.98 X PSI)	$(1.48 \times$ PSI $)$	$(.70 \times$ PSI)
60	89	178	89	42
80	119	238	118	56
100	149	NA	148	70
150	223	NA	222	105
200	NA	NA	296	140
300	NA	NA	444	210
500	NA	NA	740	350

Above figures are computed; output torques and forces are reduced by internal friction.

UNCONTROLLED IMPACT CAN CAUSE DAMAGE.

 LIMIT BOTH ROTATIONAL \& LINEAR SPEEDS BY USE OF FLOW CONTROL IN EXHAUSTING CYLINDER.
MAGNETIC SWITCH OPTIONS

Reed (G) and solid state switches (R or S) are available on rotary and linear sections of unit. Switches mount to cylinders; place as required for access and phasing.

ROTARY INSTALLATIONS:
Find C dimension in tables on A3 \& A32 page.
LINEAR INSTALLATIONS:
Add $11 / 2$ " to cylinder length and unit height

OPTIONAL ROD END (WORKS WITH SMA-10) SHOWN AT MIDPOINT OF ROTATION

MAXIMUM RATINGS			
		PA3	PA32
ROTARY SECTION	PRESSURE, AIR	165	165
	PRESSURE, OIL	165	165
LINEAR SECTION	PRESSURE, AIR	250	250
	PRESSURE, OIL	500	500
TORQUE, NON-SHOCK, IN.-LB.		250	250
Rot. Act. Disp: in ${ }^{3} / \mathrm{deg}$.		. 026	. 052
Weight 180 deg., 2" std. unit: lb.		9.2	11.9
Rotation Tolerance:		Backlash:	
PA3 \& PA32	PA32 $-0+2$ deg.	PA3	deg.
		PA32	1 deg .

NOTES:

1. Stop tubes are available to stabilize the extended shaft. Standard
lengths are $1^{\prime \prime}$ and $2^{\prime \prime}$; add to unit height. Sleeves for switch magnets
serve the same function
2. Needle valve: see page 20.

GENERAL AND MOTION CONTROL OPTIONS

INDEXING \& STEPPING ACTUATOR SHAFT KEYWAY MOTION
Specify shaft rotation looking at the projecting, load-carrying shaft.
Symbol: CW, CCW
No cost option.

PORT POSITIONS 1, 2, 3, 4, 5
NEEDLE VALVE POSITIONS 1, 2, 3, 4
(PORT \& NEEDLE VALVE CANNOT BE AT SAME POSITION)
Use numbered locations to specify desired position. No port in position 5 with options A, F or C. No port or needle valve between end caps in dual rack units; for positions 90 from shaft, specify 1,3 (top and bottom).

Symbols: 1, 2, 3, 4, 5
No cost option.

Indexing actuator: steps in specified direction to hard stops.
Stepping actuator: steps in specified direction, no hard stops. Accumulates error.

ROTATION ADJUSTER
Adjustable stop controls rotation over 30 deg. range by stroke reduction.
Can be combined with flow control or cushion in single rack actuators or steppers. Not available for indexers.

A reversed U-cup on the auxiliary piston closes the free passage to the port, forces exhaust through the control needle valve over last 30 deg. of rotation. For return, pressure folds U-cup down, allows full pressure and flow to piston.

Not fully effective in drive direction in steppers or indexers because of overrunning clutch.

Symbol: C

BUMPER
A urethane bumper is fastened to the piston face. It eliminates metal to metal contact and absorbs shock. Requires added cylinder length.

Symbol: Q

ADJUSTER AND CUSHION
Combined adjuster and cushion for single rack actuators or steppers. Installed separately, cushion on top rack, in dual rack units. Stroke reduction also reduces cushion action.

ADJUSTER AND BUMPER
Combination of adjuster and bumper. Uses enlarged adjuster face to distribute impact. Requires added cylinder length.

Forces exhausting air to pass through control needle valve, limits operating speed throughout rotation in one direction. Check valve opens for full flow on return. Requires needle valve access; not available with port position 5. Intended primarily for air operation. Can be combined with rotation adjustment.

Symbol: F

MOTION CONTROL OPTIONS

THREE POSITION ACTUATOR

Uses internal stops for optional drive to any of three shaft positions in any sequence. Available in A12, A22, A32 and A42, but drives shaft with only one cylinder at a time; use torque factor for A1, A2, A3 or A4.
Shown: A42-45-0-45-S11-C2-RR-1/4-1, 3

To specify the positions desired in a 3 position dual rack actuator:

1. Determine central reference position RP at $0 ;$ to 360 clockwise from 12:00
2. Determine angle CCW from RP: A
3. Determine angle CW from RP: B

Specify: A-RP-B
Example: 30-45-30

NOTE: MULTI-POSITION ACTUATORS

 REQUIRE TWO MAGNETIC SWITCHES TO INDICATE EACH INTERMEDIATE POSITION.

AIR DAMPERS

Auxiliary cylinders and pistons with adjustable pressurization through a relieving regulator give soft deceleration at cycle rates higher than conventional shock absorbers can tolerate.

Consult factory.

FOUR OR FIVE POSITION ACTUATORS

Pairs of auxiliary cylinders and pistons with stop rods added to three position actuators provide additional intermediate stop positions. All positions are accesssible in any sequence. Note that intermediate end caps are vented. Shown: four position A22-30/30-30-30-S5-1/8-4

FOUR POSITION:

To specify the positions desired in a 4 position dual rack actuator with auxiliary cylinders:

1. Determine an inner reference position RP at 0 to 360 i clockwise from 12:00
2. Determine angle CCW from RP: A
3. Determine angles CW from RP: B \& C Enclose RP with dashes, separate others with slash.

Specify: A-RP-B/C
Example: 30-0-30/30

FIVE POSITION:

To specify the positions desired in a 5 position dual rack actuator with auxiliary cylinders:

1. Determine the central reference position RP at $0 ;$ to 360 c clockwise from 12:00
2. Determine angles CCW from RP: A \& B
3. Determine angles CW from RP: C \& D Enclose RP with dashes, separate others with slash.

Specify: A/B-RP-C/D

Example: 30/30-30-30/30

WASHDOWN UNITS
Shaft seals built into body or integral cover plates, cylinders sealed by O-Rings, assembly threads sealed, stainless shafts, anodized body and end caps.

Symbol: J
On order, hard chrome plated shafts, electroless nickel plated body and end caps.

DUST RESISTANT UNITS

Units sealed against inward leakage
Pressurization port
Symbol: Written description

CLEAN ROOM CONSTRUCTION

Units sealed against outward leakage
Body drain or purge ports
Low vapor pressure lubrication
Dry lubrication or wear rings
Symbol: Written description

SPECIAL SEALS

High temperature or aggressive fluids: FKM Note bearing seal limitations.

Symbol: V

Minimum fluid leakage: Pretensioned seals. Check fluid compatibility. Note increased breakaway pressure.

Symbol: T

HIGH PRESSURE CONSTRUCTION

For pressures to 750 psi. Steel cylinders (no magnetic switches), hydraulic pistons with backup rings or pretensioned seals as required. Thread inserts on tie rod anchors. Body drain if desired.

Symbol: HP

HEAVY DUTY, DUST RESISTANT A4, A42, X4, X42

Sealed, non-pumping structure-dust stays out.
Pistons: two PTFE wear rings, carboxylated nitrile seals.
Cylinders: hard chrome ID, epoxy OD or aluminum with hard coat ID.
Lube: extra-tacky air cylinder grease.
Symbol: A or K
REAR MOUNT CONSTRUCTION X3, X32, X4, X42

Shaft projects from rear; front mount holes opposite. Specify shaft rotation and options relative to shaft. Note reduced impact capacity page 29.
Symbol: B

SIGNAL OPTIONS - MAGNETIC SWITCHES

SET UP AND OPERATION

Adjust switch position along exhausting cylinder to phase signal for desired sequence.
Adjustable range: 30 deg. or $1 / 2$ stroke, whichever is smaller.
Keep magnetic materials away.
Multi-position actuators require two switches to indicate each intermediate position; a single switch will indicate each end position.

Rotomation piston magnets and switches are designed to work together. Magnets or switches may or may not work with components of other manufacture.

MAGNETIC SWITCHES

SWITCHES FOR TIE ROD UNITS SWITCHES FOR A032, A752 \& AL75
SWITCHES FOR PBM

SWITCH LEADS:

Description
Specify
9 ft . PVC cable, 3 conductor, color coded.

6 inch. pigtail with 8 mm quick disconnect.

EXTENSION CABLES - ORDER SEPARATELY

Cables have 8 mm locking connector to connect to switches, above. 3 conductors color coded brown, black, blue.

Cable length	Part Number
2 m	CC2
5 m	CC5

REPLACEMENT SWITCHES

Order by number adjacent to switch block in diagrams above. Switches with leads identified by L, those with pigtail and connector by C. Switches are tested before shipment and are NOT returnable.

Extension cables have same color coding as A032, A752 and AL75 switches above, right.

LED indicates switch operation.
Standard lead length is 9^{\prime}; connector is on $6^{\prime \prime}$ pigtail.
Observe polarity; reversal will damage switch.
Observe maximum ratings; exceeding them will damage switch.
Reed switch has built-in surge protection; others do not.
Switches and cables resistant to moisture, dust and oil: designed to meet NEMA 4 specification.

OTHER SIGNAL OPTIONS

MAXIMUM LOAD TORQUE ON EXTENDED PAWL SHAFT

Unit	In. Oz.
X1 or X12	1
X2 or X22	2
X3 or X32	10
X4 or X42	17

INDEXING ACTUATOR EXTENDED PAWL SHAFT
Shaft rotates 7 deg. at index and reset. Arm actuates switch, prox detector or pilot valve. Dimensions: see Design Your Indexing Actuator page 24.

For use in explosive or other atmospheres or with air logic controls. Ports provide line pressure signal at ends of rotation to actuate external devices. Fixed position, not adjustable.

MOUNT PLATE OPTIONS

MATCH YOUR LOAD WITH SHAFT OPTIONS

Shaft extends from the rear of the unit as well as the front. Rear projection dimensions same as front.

Symbol: D(SIZE)
A42-180-CCW-D11-3C2-1/4-1\&3 shown.

HOLLOW SHAFT
Provides compact coupling to load; dimension table below.
Self aligning if mounted free on driven shaft with turnbuckle to absorb torque.

Symbol: HS(SIZE)
A42-180-TC-HS75-3C2-1/4-1\&3 shown.

PRELOADED KEYWAY
SET SCREW LOCKS KEY

Unit Size	Shaft Dia.	'R'	'D'
1 or 12	.375	.125	.312
2 or 22	.500	.156	.375
3 or 32	.750	.188	.688
4 or 42	1.000	.250	.812
	1.125	.250	.812

Symbol: KK

REAR PROJECTING SHAFT A032

Specify options from front view of unit. Rear projecting shaft operates like rear half of double ended shaft.

SHAFT DIAMETER:	3/16	1/4			3/8			3/8 ID	1/2		3/4			3/4 ID	1			$11 / 8$	
SHAFT SYMBOL:	S18	S25	D25	R25	S37	D37	R37	HS37	S5	D5	S75	D75	R75	HS75	S10	D10	R10	S11	D11
UNIT SYMBOL:																			
A032		0	0	0	S	0	O*												
A01	0	S	0																
A1 or A12		0			S	O		O											
S1					S														
X1 or X12					S	0													
AL75		S	0	0															
A752					S	0		0											
A2 or A22								0	S	0									
S2 or S22									S	O									
X2 or X22									S	O									
A3 or A32											S	0		0					
S3 or S32											S								
X3 or X32											S	0	0						
A4 or A42														0	S	0		O *	0
S4 or S42															S	0			
X4 or X42															S	0	0		

Abbreviations: "S18" means "single ended shaft .188" (3/16") diameter; others similar. "D18" means "double ended shaft .188" (3/16") diameter; others similar. "R37" means "rear projecting shaft .375" (3/8") diameter; others similar. "HS37" means "hollow shaft .375" (3/8") inside diameter; others similar. "S" means "standard".
"O" means "optional"

* No cost option; all other optional shaft configurations at slight additional cost.

HOLLOW SHAFT

UNIT	SHAFT SYMBOL	SHAFT I.D.	KEYWAY	SHAFT O.D.	STD. BRG.	SET SCREW
A1, A12 \& A752	HS37	$.3755 / .3765$	$3 / 32 \times 3 / 64$.625	BRONZE	$8-32$
A2, A22	HS37	$.3755 / .3765$	$3 / 32 \times 3 / 64$.750	BALL	$8-32$
A3, A32	HS75	$.751 / .752$	$3 / 16 \times 3 / 32$	1.378	BALL	$10-32$
A4, A42	HS75	$.751 / .752$	$3 / 16 \times 3 / 32$	1.378	BALL	$10-32$

SPECIAL SHAFTS:
Specify or sketch: Length or projection
Diameter
Keyway
Drill or tap
Retaining ring groove
Bore
Wrench flats
Material
Heat treat
Plating
Most configurations in short
time at low cost.
Ask for quotation.

SHAFT MOUNTING ADAPTERS

MALE PILOT OPTION

FEMALE PILOT OPTION

		DIMENSIONS														
SIZE	SHAFT DIA.	A	B	C	D	E	F	G	H	J	K	L	M	N	P	R
37	. 375	2.00	1.063	. 313	1.00	. 375	. 750	3/32 X . 75 LG.	6-32	\#8-32	1.375	1.22	. 219	\#10-32	. 060	. 250
50	. 500	2.50	1.188	. 375	1.25	. 500	. 813	$1 / 8 \times .81 \mathrm{LG}$.	6-32	\#10-32	1.750	1.64	. 219	\#10-32	. 060	. 250
75	. 750	3.50	1.875	. 500	1.63	. 750	1.375	3/16 X 1.38 LG.	10-32	1/4-20	2.500	2.25	. 281	1/4-20	. 060	. 313
10	1.000	4.00	2.125	. 625	2.25	1.000	1.500	$1 / 4 \times 1.50$ LG.	1/4-20	5/16-18	3.000	2.56	. 406	3/8-16	. 125	. 438
11	1.125	4.00	2.125	. 625	2.25	1.125	1.500	$1 / 4 \times 1.50$ LG.	1/4-20	5/16-18	3.000	2.56	. 406	3/8-16	. 125	. 438

-ORDERING INFORMATION-

NOTES:

1. Material: Clear anodized aluminum
2. User specified holes: Send drawing. Factory will assign number XXX
3. Adapters are stocked with no holes and with holes as shown. Special hole
patterns and pilots are normally added after anodize and will expose bare aluminum.
4. Keyway is aligned with sides of plate. Reference bore ' R ' is concentric with shaft bore within .001 TIR
5. Shaft mounting adapters shipped with key, clamp screws \& set screws.
6. Pilot diameter tolerance is $\pm .002$.

HYDRAULIC SWING CLAMP

'Z'ワ $\quad `$ '

VIEW 'z'-Z'
(4) . 406 (13/32) THRU HOLES, WITH 5/8 C'BORE, NEARSIDE

CLAMP PART NUMBER

(Send dimensioned sketch, factory will assign number)

DESCRIPTION:

Clamp rod and arm extended and retracted by 1.375 bore cylinder with .750 diameter rod. Rod and arm rotated 90 deg. by rack and pinion actuator. Extend/retract and rotation separately plumbed and controlled.

RATINGS

Maximum Working Pressure, p.s.i.:	500
Maximum Clamping Force, Ibs.:	528
Maximum Extend Force, Ibs.:	742
Clamp Arm Rotation, deg.:	90
Bore Diameter:	$1.375^{\prime \prime}$
Rod Diameter:	.750 "

OPTIONS

Stroke:	.5 " To 8"
Ports:	$1 / 8^{\prime \prime}$ NPT

CONSTRUCTION:

Rod: Chrome Plated 303 Stainless Steel Body: 6061 Aluminum, Electroless Nickel Plated End Cap: 2024 Aluminum, Black Anodized Tie Rods \& Nuts: 303 Stainless Steel

SPECIAL ORDER:

Rod End Detail: Send Dimensional Sketch
Port \& Mount Hole Size \& Location
Materials
Finishes

READY REFERENCE - INSTALLATION \& OPERATION

GENERAL

Torque and thrust data given in the brochure are theoretical and intended as a guide to performance. Applications, including specification of required unit size, etc. are the responsibility of the user. Rotomation will handle repair or replacement expeditiously, making all reasonable efforts to provide same day shipment via overnight air on items received by that routing, but cannot be responsible for consequent or other related costs.

Improvements are frequent and designs are subject to change without notice; mounting dimensions are kept unaltered for interchangeability.

User notation of the invoice number or the serial number stamped on the unit body will enable duplication of prior units.

ACTUATOR AND INDEXER SHOCK LOADS

In many cases, an actuator or indexer must be sized for the load it will stop rather than the operating torque requirement. Avoid impact loads caused by load momentum; their energy can break the shaft or gear and rack teeth; they are the primary cause for catastrophic failure.

The best way to control impact is to reduce the load inertia as much as feasible and then to limit its angular velocity. Determine the dwell time needed at the work station, then use as much as possible of the remaining time for transport by controlling rotational speed with flow control of the exhausting cylinder.

External stops, with or without shock absorbers, should be used in severe actuator installations. If external stops are not practical, auxiliary cylinders and pistons with an adjustable external air supply can be fitted to absorb load energy. Internal cushions will quiet a light load but will not dissipate a significant amount of load energy.

For an indexer, external shock absorbers can be effective if properly installed to allow full angular travel of the load.

ACTUATOR ROTATION AND POSITION ACCURACY

The tolerance of the angle of shaft rotation is shown in the table on page 5. The tolerance on keyway position at the ends of rotation is one-half of the rotation tolerance plus one degree. For example, an A3-90-CW... shaft will rotate through 90 to 92 deg. $\left(-0^{\circ}+2^{\circ}\right.$ tolerance $)$. Its keyway will start between 358° and 0° ($1 / 2 \times 2^{\circ}+1^{\circ}$ tolerance) and will finish rotation between 90° and $92^{\circ}\left(1 / 2 \times 2^{\circ}+1^{\circ}\right.$ tolerance $)$.

BACKLASH IN ACTUATORS

Rotomation dual rack actuators are arranged so that at the end of stroke the tooth backlash distance is taken up by one-half the unit torque. Order the dual rack configuration to achieve this position accuracy without external stops.

In single rack actuators there is ordinarily some backlash at the ends of rotation. See table, page 5 for maximum values.

CONTROL COMBINATIONS

Not all controls can be combined at one end of a cylinder. Combinations of controls are possible in a two rack unit which provide functional and access advantages. Combination of flow control and cushion or cushion and rotation adjuster can be set up on different racks, can be placed at one end or the other to improve access or installation arrangements.

PHONE \& FAX SUPPORT

TORQUE REQUIREMENT

Specification of an actuator or other rotary device should begin with the load torque requirement with margin to account for variations in load, system pressure at the actuator and friction in the actuator (See "Breakaway Friction"). Actuator and load static friction occur at the start of the cycle and must be allowed for. Load torque should be measured rather than computed to avoid errors from unanticipated factors. Temporary torque arms and "fish scale" force measurements will usually suffice. With the load torque known, a device can be specified on the basis of minimum system pressure and a reasonable margin; 40% is used by many designers to assure reliable production.

BREAKAWAY FRICTION

The pressure energized nitrile seals used allow breakaway at low pressure. Actuators and steppers start and move smoothly at or below 5 psi, indexers below 7 psi , and pick and place and nitpicker units below 15 psi. Pretensioned seals or seals of FKM increase this pressure to as much as 25 psi .

DUAL RACK INDEXING AND STEPPING ACTUATORS

Many applications involve moving a load which is primarily inertia. In this case, the limiting factor for an indexing actuator is its ability to stop the load. The only reason to specify a dual rack actuator is for an application with a high torque, low inertia load, such as friction, bending, or lifting.

INDEXING AND STEPPING ACTUATOR TORQUE RATINGS

The maximum torque is limited by the roller clutches used to drive the shaft and to prevent reverse rotation. Exceeding the maximum working pressure specified may overload the clutch, reducing life and/or causing immediate failure. Dual rack actuators are intended for use in applications where the maximum torque rating of the clutch cannot be utilized on normal shop air. Please note that normal shop air may overload the clutch on a dual rack indexing or stepping actuator. Reverse torque from an external source can also damage the actuator if it exceeds the maximum torque rating.

MAXIMUM OPERATING RATES

Rotomation devices are capable of operating at rates as high as hundreds of cycles per minute, but the angular momentum of most loads will limit the usable rate. See "Actuator and Indexer Shock Loads". System and cycle design should begin with identification of the total amount of time available for load transport, allowing necessary dwell time for machine or manual operations. With the cycle set up to utilize this time, the load motion can be slowed as far as possible and the effects of load velocity minimized. Especially with high cycle rates, it is wise to limit impact velocity by use of flow control in the exhausting cylinder or by lowered system pressure. Impacts which cause torsional vibration or bounce will generally cause failure of parts.

READY REFERENCE - CONTINUED

PNEUMATIC OPERATION AND LUBRICATION

With clean air, normal loading and noncorrosive environment, Rotomation actuators will operate for millions of cycles without added lubrication. For maximum life with high cycle rates and/or less clean environment, the heavy duty (A, K or J) options should be specified and/or airline lubrication utilized. Lubricators should be appropriately sized, positioned to allow downward flow to the actuator and kept filled with lubricant compatible with the seals in use.

FLUID MEDIUM AND SEALS

Use a good, clean fluid compatible with the seals in dynamic applications. Seals are of nitrile (Buna) unless specified otherwise; check the fluid in use. If other seals materials have been specified, particular attention is required. Polyurethane, used in pretensioned seals, is not compatible with automatic transmission fluid and a number of widely used petroleum based fluids. Where high temperature or aggressive fluids (as phosphate esters) are encountered, specify fluorocarbon seals. Pretensioned seals and some seal compounds cause increased cylinder friction, raising the breakaway pressure to as much as 25 psi.

OIL LEAKAGE

Hydraulic units will, in general, suffer some leakage. Piston seal leakage will be apparent ultimately as leakage from the body, and will occur in either air/oil or hydraulic installations. The amount is usually small, resulting from the relaxation of the seal when pressure is removed, either during normal cycling or shutdown. This oil can be disposed of by the installation of a drain connection to the body which will be supplied upon request; specify mount orientation for correct location. Pretensioned seals will markedly reduce leakage. However, these seals increase breakaway pressure as much as 25 psi, which is negligible in most hydraulic systems but is not tolerable in some air/oil applications. Multiple seals may be effective in some instances. Consult the factory.

AIR/OIL INSTALLATIONS

Air/oil systems provide close control and smooth motion but operate at relatively low rotation rates unless large passages and valves are provided for high flow rates at low pressure differentials. Conventional air/oil systems use air/oil tank for each direction with a flow control in each air or oil line, depending upon the degree of control required. Slow, uniform motion in one direction and faster motion in the other can be achieved using an air/oil tank and cylinder on one side, and straight air, flow controlled in exhaust, on the other side. Seals and fluid should be carefully selected to achieve desired motion and leak characteristics.

FLOATING PISTONS

Floating pistons provide many operating advantages, they may require special attention during set up when the shaft is moved manually without pressure in the cylinders to keep the pistons against the ends of the rack; the pistons often stick against the end caps, leaving the rack free. The result is that the piston will make a noisy impact against the rack when pressure is applied. In case of a unit with magnetic pistons, the uncertainty of piston location can lead to errors in setting the operating point of magnetic switches; use a low pressure to retain the pistons if manual positioning is required. All Rotomation units except the following have floating pistons: A032, A01, A1, S1, X1, X12, AL75, A752 and PA01; these units have captive pistons.

INTERNAL LUBRICATION

The internal lubrication applied in factory assembly will ordinarily last the life of the unit. Only if the unit is operated at extreme rates or is subject to temperatures high enough to cause displacement of the grease should added lubrication be required. $1 / 2$ to 1 teaspoon of general purpose lithium based grease may be placed on the rack teeth and cylinders at the time of installation of replacement seals or other repair. The cylinders and seals are lubricated in assembly with a lithium based grease containing suspended PTFE.
NOTE: Units manufactured prior to early 1987 had grease fittings or plugs. These have been eliminated to avoid possibility of jamming the unit by excess lubricant.

LOAD COUPLING

The load hub should fit the shaft closely and the key be of correct size and length to make a firm fit using all available keyway length. Tighten the set screw over the key firmly, retaining its position with thread locking adhesive.

ADJUSTABLE LOAD COUPLING

For a hard coupling allowing angular adjustment of the load position, a self-locking coupling (Ringfeder, etc.) can be used directly on the Rotomation and using shafts. Couplers must be carefully installed and tightened; they require wrench clearance and precise shaft alignment.

MOUNTING AND ALIGNMENT

Where possible, provide a compliant coupling between the Rotomation unit and its load. If a hard coupling to a firmly supported shaft is required, provide adjustment of the angle and position of the Rotomation shaft using shims, slotted holes or other means. With mount screws installed and at intended torque, test for free rotation of the shaft and unit. See "Hollow Shaft" below.

HOLLOW SHAFT ACTUATOR INSTALLATION

For a compact, self-aligning installation, place the hollow shaft actuator over the driven shaft, allowing the weight of the actuator to be carried by the shaft and its bearings. Arrange a turnbuckle to take the actuator torque by attaching one end to the actuator by a bracket to mount holes, and the other to the using assembly. The actuator thus remains in alignment with the shaft; adjust the turnbuckle to set the keyway position precisely.

(1)OTOMATION

11 SUNSHINE BOULEVARD ORMOND BEACH, FLORIDA 32174
TELEPHONE: (386) 676-6377
FAX: (386) 676-6379
E-Mail: sales@ rotomation.com
Web: www.rotomation.com

