Static Dissipative Polyurethane #### **Specifications** Temperature Range -40°F to +165°F Vacuum Rating To 28" Hg. Diameter Tolerances ±.005" Tube Markings None Dissipative Values: per EIA Std 541 Volume Resistivity: 85A: 4x10¹⁰ ohms-cm 90A: 9.9x10° ohms-cm Surface Resistivity: 85A: 1x10¹¹ ohms/sq 90A: 9.9x10° ohms/sq Working Pressure 3:1 Safety Factor UV Stabilized 90A & 85A Resin Compliance 85A: FDA Suggested Fittings tatic electricity is a stationary charge of electricity resting on an object's surface. With plastic tubing, the charge is usually generated by friction on the exterior or interior of the tubing. The charge is typically localized. This means that a charge may exist on one part of the tube but not the entire tube. The spotty nature of the charge makes it much harder to detect. Furthermore, humans can only sense electrostatic discharge (ESD) greater than 3,500 electrostatic volts. A charge as low as 100 ESD volts can damage certain circuits meaning that electronics can be destroyed by ESD without the person even knowing it. For more information about ESD, please contact Freelin-Wade. Freelin-Wade's Static Dissipative Polyurethane tubing is available in both a 90A durometer and an 85A durometer tube. It's made from an Ether-based polyurethane that is specially formulated to help control ESD. It should always be used in low humidity environments or when tubing is going to be near circuit boards. #### **Features** - Dissipates electrostatic charges with no chemical additives. - Contains no conductive fillers and no particle emission. - Dissipative values are permanent and cannot be washed away. - Non-contaminating and non-outgassing. - Ideal for low humidity environments. ## **85A Static Dissipative Polyurethane** | | | | | | - | | , | | |---|----------|----------|------------|----------------------------------|--|---------------|--------------------------|------------------| | Part Number & Packaging
Color Code Unit Size | OD | ID | Wall | Standard Colors | Working Pressure
75°F/25°C 150°F/65°C | lbs./
100' | Bend
Radius | Fitting | | 1J-413 100' Bag
1C-413 500' Reel
1B-413 1000' Reel
1A-413 2500' Reel | 1/8" | 1/16" | .031" | (1) 81 | 115 PSI 55 PSI | .48 | 3/16" | В | | 1J-430 100' Bag
1C-430 500' Reel
1B-430 1000' Reel
1A-430 2500' Reel | 5/32" | 5/64" | .039" | O) (2) (7) (2) 25 27 28 45 46 81 | 125 PSI 60 PSI | .74 | 3/8" | В | | 1J-425 100' Bag
1B-425 500' Reel
1A-425 1000' Reel | 1/4" | 1/8" | .062" | ① 81 | 120 PSI 60 PSI | 1.91 | 1/2" | В | | 1J-405 100' Bag
1A-405 500' Reel | 3/8" | .245" | .065" | ① 81 | 90 PSI 45 PSI | 3.29 | 3/4" | В | | Part Number & Packaging
Color Code Unit Size | OD
mm | ID
mm | Wall
mm | Standard Colors | Working Pressure
75°F/25°C 150°F/65°C | lbs./
100' | Metric
Bend
Radius | Sizes
Fitting | | 1J-458 100' Bag
1B-458 500' Reel
1A-458 1000' Reel | 6 | 4 | 1 | 81 | 70 PSI 35 PSI | 1.27 | 9.5 mm | В | | 1J-472 100' Bag
1A-472 500' Reel | 9 | 6 | 1.5 | (1) 81 | 80 PSI 40 PSI | 2.84 | 19 mm | В | | Variations Available | : | | | Coiling • Colors • Cutting • B | onding • Printing | Pack | aging • | Sizes | ## **90A Static Dissipative Polyurethane** | | Packaging
Unit Size | OD | ID | Wall | Standard Colors | Working
75°F/25°C | Pressure
150°F/65°C | lbs./
100' | Bend
Radius | Fitting | |---|------------------------|-------|-------|-------|-----------------|----------------------|------------------------|---------------|----------------|---------| | 1J-486-90 _
1C-486-90 _ 10
1B-486-90 _ 10 | 500' Reel
000' Reel | 5/32" | 3/32" | .031" | 0 00000 | 105 PSI | 50 PSI | .61 | 3/8" | В | | 1J-451-90
1B-451-90 =
1A-451-90 10 | 500' Reel | 1/4" | .160" | .045" | © | 115 PSI | 60 PSI | 1.46 | 3/4" | В | | 1J-452-90
1A-452-90 : | 100' Bag
500' Reel | 3/8" | .245" | .065" | 65 | 100 PSI | 50 PSI | 3.18 | 1" | В | | | | | | | | | | Metric | Sizes | |--|----------|----------|------------|--------------------------------|----------------------|------------------------|---------------|----------------|---------| | Part Number & Packaging
Color Code Unit Size | OD
mm | ID
mm | Wall
mm | Standard Colors | Working
75°F/25°C | Pressure
150°F/65°C | lbs./
100' | Bend
Radius | Fitting | | 1J-486-90 <u>100' Bag</u>
1A-486-90 <u>2500' Reel</u> | 4 | 2.4 | .8 | 000000 | 105 PSI | 50 PSI | .80 | 9.5 mm | В | | 1J-488-90 100' Bag
1B-488-90 500' Reel
1A-488-901000' Reel | 6 | 4 | 1 | 0 0 0 81 | 90 PSI | 45 PSI | 1.3 | 12.7 mm | В | | 1J-489-90 _ 100' Bag
1A-489-90 _ 500' Reel | 8 | 5 | 1.5 | 00 | 100 PSI | 50 PSI | 2.6 | 19 mm | В | | 1J-490-90 _ 50' Bag
1A-490-90 _ 500' Reel | 10 | 6.5 | 1.75 | 65 07 | 100 PSI | 50 PSI | 3.9 | 22.3 mm | В | | 1J-491-90 _ 50' Bag
1A-491-90 _ 250' Reel | 12 | 8 | 2 | o | 90 PSI | 45 PSI | 5.3 | 28.6 mm | В | | Variations Available: | | | | Coiling • Colors • Cutting • B | onding • I | Printing • | Pack | aging • | Sizes | ## **Resource Guide-Chemical Resistance Chart** his information was provided to Freelin-Wade by our suppliers and other sources. It is to be used only as a general reference guide to aid in the selection of products in which chemical and material compatibility issues are a factor. This guide is not intended as a complete nor conclusive database. Freelin-Wade does not guarantee these ratings since the resistance of a material can be greatly affected by the temperature, consistency, and presence of other chemicals. Ultimately, the consumer must determine the chemical compatibility of an item based on the conditions in which the product is being used. | | PUR | PE | PVC | Nylon | Kynar | |--|-------------|---------------|----------------|-------|-------| | Acetic Acid, Glacial
Acetic Acid, 30% | 4 | 2 | 4 | 2 | 1 | | Acetone | 4 | 2 | 4 | 1 | 4 | | Acetylene
Alkazene | 4 | • | 1 | 1 | - | | Aluminum Chloride (aq)
Aluminum Nitrate (aq) | 3 | 2 | 1 2 | | 1 | | Ammonia Anhydrous | 4 | 2 | 1 | i | 4 | | Ammonia Gas (cold) Ammonia Gas (hot) Ammonium Chloride (aq) 40% | 4 | | - | 1 | 4 | | Ammonium Chloride (aq) 40%
Ammonium Sulfate (aq) | 2 | 1 | 1 | 1 | 1 | | Amyl Alcohol
Amyl Naphthalene | 4 | 2 | 1 | | 1 | | Animal Fats | 1 | - | - | | - | | Aqua Regia
Arsenic Acid | 3 | 2 | 3 | | 1 | | Asphalt
ASTM Fuel A | 2 | 1 | 1 | | 1 | | ASTM Fuel B | 3 | - | . 4 | | - | | ASTM Fuel C
Barium Chloride (aq) | 3
1 | 1 | 1 | 1 | 1 | | Beer
Beet Sugar Liquors | 2 | 2 | 1 | 1 | 1 | | Benzene | 3 | 4 | 3 | 1 | 1 | | Benzine
Blast Furnace Gas | 2 | - | - | - | | | Bleach Solutions
Borax | 4 | 1 | 1 | | 1 | | Boric Acid | 1 | 1 | i | - | 1 | | Brake Fluid
Brine | 2 | • | 3 | • | 1 | | Bromine Water | 4 2 | - | 3 | 4 | 1 | | Bunker Oil
Butane | 1 | 3 | 3 | 1 | 1 | | Butter
Butyl Alcohol (Butanol) | 3 | 1 | 3 | 1 | 1 | | Butylene
Calcium Chloride (aq) | 4 | 1 | 1 | i | 1 | | Calcium Hydroxide (aq) | 2 | i | 2 | | 1 | | Calcium Nitrate (aq) Calcium Sulfide (aq) | 1 | - | 1 | 1 | 1 | | Cane Sugar Liquors | 4 | -
4 | 1 | - | 1 | | Carbolic Acid
Carbon Dioxide | 1 | 2 | 1 | - | 1 | | Carbonic Acid
Carbon Monoxide | 4 | 2 | 1 | - | 1 | | Carbon Tetrachloride
Castor Oil | 4 | 4 | 4 | 3 | 1 | | Chlorine (dry) Chlorine (wet) | 4 | 3 | 4 | 4 | 1 | | Chlorine (wet) Chloroform | 4 | 3 | 4 | 3 | 1 | | Chlorox | 4 | ī | 4 | 4 | 1 | | Chromic Acid 50% | 1 | i | 2 | 1 | 1 | | Coal Tar (Creosote) Coconut Oil | 3 | i . | 1 | - | 1 | | | 1 | 1 | 1 | | - | | Copper Chloride (aq) | 1 | 2 | 1 | | 1 | | Coke Oven Gas Copper Chloride (aq) Copper Cyanide (aq) Corn Oil | 1 | 2 | 1 2 | | 1 | | Coffon Seed Oil | 1 | 1 | 2 | 4 | 1 | | Creosol (Methyl Phenol) Cychlohexane | 1 | 4 | 4 | 1 | i | | Denatured Alcohol Detergent Solution | 3 | 1 | 1 | | | | Diesel Oil | 2 | 3 | 1 | | 4 | | Dioxane
Dowtherm Oil | 3 | - | - | - : | - | | Dry Cleaning Fluids
Ethane | 4 | - | 1 | - | - | | Ethyl Acrylate | 4 | - 2 | - 3 | 3 | 1 | | Ethyl Alcohol (Ethanol) Ethyl Benzine | 4 | - | - | - | - | | Ethyl Cellulose
Ethyl Chloride | 2 | 4 | 4 | | 1 | | Ethyl Ether | 3 | 4 | 4 | - | 1 | | Ethylene Chloride
Ethylene Glycol ⁵ (Anti-Freeze) | 4 | 4
1 | 4
1 | 1 | 1 | | Ethylene Oxide Ethylene Trichloride Ferric Chloride (aq) Ferric Sulfate (aq) Ferric Sulfate (aq) | 4 | 3 | 3 | 1 | 1 | | Ferric Chloride (aq) | 1 | 2 | 1 | | 1 | | Ferric Sulfate (aq) | 1
2 | - 1 | 1 | | 1 | | Fluroine (Liquid)
Formaldehyde (RT) | 4 | 3 | 4 | 1 | 1 | | Formic Acid
Freon 11 | 4 | 2 | į | 4 | 1 | | Freon 12 | 4
1 | 3
1 | 1 | 1 | - | | Freon 22
Fuel Oil (Bunker 'C') | 4 2 | 3 | 1 | 1 | 1 | | Gasoline (100 Octane, High Test) | 3 | 4 | 3 | 1 | 1 | | Glue
Glycerin (Glycerol) | 1 | 1 | 3
1 | 1 | 1 | | Glycerin (Glycerol)
Glycols
Green Sulfate Liquor | 4 | - | - | 1 - | - | | Hexane | 2 | 41 | 2 ² | - | ī | | Hydraulic Oil
Hydrochloric Acid (cold) 37% | 1 | 1-3
2 | 1 2 | 4 | 1 | | Hydrochloric Acid (hot) 37% | 4 | - | - | 4 | 1 | | Hydrofluroic Acid (Conc.) (cold)
Hydrofluroic Acid (Conc.) (hot) | 4 | 2 | - | • | 1 | | Hydrogen Gas
Isobutyl Alcohol | 3 | 1 | 1 - | 1 | 1 | | Isooctane | 3
2
4 | 3 | 1 | | 1 | | Isopropyl Acetate
Isopropyl Alcohol (Isopropanol) | 3 | 1 | - | 1 | 1 | | Isopropyl Ether
Kerosene | 2
1 | 1 4 | 2 | 1 | 1 | | | · | | _ | · | | | | PUR | PE | PVC | Nylon | Kynar | |---|------------------|------------------|--------|--------|--------| | Lacquers
Lacquer Solvents | 4 | 1 | 4 | | | | Lard | 1 | i | i | | 1 | | Lavender Oil
Lead Acetate (aq) | 4 | 1 | 1 | | 1 | | Linseed Oil
Liquified Petroleum Gas | 2 | 3 | 1 | 1 | 1 | | Lubricating Oils | 1-2 ³ | 4 | 2 | 1 | 1 | | Lye
Magnesium Chloride (aq) | 4 | 1-4 ⁴ | 1-2 | 1 | 1 | | Magnesium Hydroxide (aq) | 4 | 2 | 1 | - | 1 | | Mercury
Methane | 3 | 1 | 1 2 | 1 | 1 | | Methyl Acetate | 4 | 2 | 4 | 1 | 1 | | Methyl Acrylate Methyl Alcohol (Methanol) | 4 | 1 | 1 | i | i | | Methyl Butyl Ketone
Methyl Chloride | 4 | 4 | 1 | 1 | 1 | | Methylene Chloride
Methyl Ethyl Ketone | 4 | 4 | 4 | - | 1 | | Methyl Ethyl Ketone
Methyl Isobutyl Ketone | 4 | 2 | 4 | 1 | 4 | | Milk | 4 | - 1 | - 1 | 1 | 1 | | Mineral Oil
Motor Oil 20W, 10W40 | 1 | 3 | 1 | 1 | 1 | | Naphtha (Lighter Fluid) | 2 | 4 | 1 | 1 | 1 | | Naphthalene (Moth Repellent) Natural Gas | 2 | 2 | 4
1 | 1 | 1 | | Neatsfoot Oil
Nitric Acid 70% | 1 | - | - | - 4 | 1 | | Nitric Acid (Dilute) 10% | 3 | 2 | 1 | 4 | 1 | | Nitroethane | 4 | i | - | | 1 | | N-Octane
Oleic Acid | 2 | 1 | 3 | 1 | 1 | | Oleic Acid
Oleum Spirits
Olive Oil | 3
1 | 4 | 4 | | 4
1 | | Oxygen (cold) | 1 | - | - | 1 | 1 | | Oxygen (cold)
Oxygen (200-400F) | 4 | | - | | | | Paint Thinner, Duco
Perchloric Acid | 4 | ī | 3 | - | 1 | | Perchloroethylene | 2 | 3 | 3 | 3 | 1 | | Petroleum - Below 250F
Petroleum - Above 250F | 4 | - | - | 4 | - | | Phenol (Carbolic Acid) Phenyl Ethyl Ether Phosphoric Acid - 45% | 3 | 2 | 3-4 | 4 | 1 | | Phosphoric Acid - 45% | 4 | 1 | 2 | 2 | 1 | | Pickling Solution Picric Acid | 4 | 1 | 4 | 3 | 1 | | Potassium Acetate (aq) | 4 | - | - | - | 1 | | Potassium Chloride (aq) Potassium Cyanide (aq) | 1 | 2 | 1 | | 1 | | Potassium Hydroxide (aq) | 4 | 1 | 1 | 3 | 4 | | Producer Gas
Propane | 1 | 1 | 1 | 1 | 1 | | Propyl Alcohol (Propanol) | 4 | ī | 1 | - | 1 | | Propylene
Propylene Glycol (Anti-Freeze) | 3 | 1 | 3 | 2 | 1 | | Propylene Oxide | 4 | 2 | - | - | 4 | | Pydraul, 10E, 29 ELT
Pydraul 30E, 50E, 65E | 4 | | - | | | | Pydraul, 115E | 4 | - | | - : | | | Pydraul 230E, 312C, 540C
Rapeseed Oil | 2 | 4 | - | - | - | | RJ-1 (MIL-F-23338 B)
RP-1 (MIL-F-25576 C) | 1 | | | | | | Salt Water | 2 | 1 | 1 | 1 | 1 | | Sewage
Silicate Esters | 1 | - | - | - | 1 | | Silicone Oils | 1 | 1 | i | • | 1 | | Silver Nitrate
Skydrol 500 | 1 | 1 | 1 | | 1 | | Skydrol 500
Skydrol 700 | 4 | - | - | - | | | Soap Solutions
Sodium Chloride (aq) | 3 | 4 | 1 | 1 | - | | Sodium Hydroxide (aq) | 4 | 1 | 1 | 2 | 4 | | Sodium Peroxide (aq) Sodium Phosphate (aq) | 1 | 1 - | 2 | | 1 | | Sodium Sulfate (aq) | 1 | 1 | 1 | | - | | Soy Bean Oil
Stoddard Solvent | 2
1 | 3 | 1 | | 1 | | Styrene (Monomer) | 4 | 2 | 4 | - 1 | 1 | | Sucrose Solution Sulfuric Acid (Dilute Battery Acid) | 3 | 1 | i | - | i | | Sulfuric Acid (Conc)
Sulfuric Acid (20% Oleum) | 4 | 2 | 4 | | 1 | | Sulturous Acid | 4 | 2 | 1 | - : | - | | Tannic Acid Tetrochlorethylene | 4 | 1 2 | 1 | | 1 | | Toluene (Toluol) | 4 | 3 | 4 | 1 | 1 | | Transformer Oil Transmission Fluid Type A | 2 | | 2 | - | | | Trichloroethane | 4 | 4 | 3 | 3 | 1 | | Trichloroethylene
Turbine Oil | 4
1 | 3 | 4 | 3
1 | 1 | | Turpentine | 4 | 4 | 4 | 1 | 1 | | Varnish
Vinegar | 3 | 3 | 4 | 1 | 1 | | Vinyl Chloride | 4 | 4 | 4 | - | 1 | | Water
Whiskey, Wines | 1 2 | 1 | 1 | 1 | 1 | | White Oil | 1 | - | - | - | - | | Wood Oil
Xylene | 3
4 | 4 | 4 | 1 | 1 | | Zinc Acetate (aq) | 4 | - | | | i | | Zinc Chloride (aq) | 2 | 1 | T | | 1 | | 1 Petroleum Base 2 Synthetic | Base = | 1. Petr | oleum | Base : | = 3 | ### **Rating Scale** - 1= Little or no impact - 2= Minor effect - 3= Moderate effect - 4= Severe effect **1** Petroleum Base **2** Synthetic Base = 1, Petroleum Base = 3 **3** SAE 10, 20, 30, 40, 50 = 1, Petroeum = 2 4 Calcium Hydroxide & Potassium (Hydroxide=1, Sodium Hydroxide=4) 5 See Propylene Glycol 6 See Ethylene Glycol